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Abstrad. A quasi-two-dimensional PeierlcHubbard model with the typical two types of 
anharmonicphonons has been studied, so as toclarify both the enhancement and reduction 
ofisotopeshiftsofsuperconducting(s~) transitiontemFerature T,. aswell as thecompetition 
between the metallic state and the charge-density-wave (CDW) or spin-density-wave (SDW) 
state. The first type is a sextic anharmonicity like a hard-core repulsion, and the second type 
is a small negative quartic anharmonicity in addition to the sexticone, just like a mixture of 
a hardcoreandasoftone.This1heoryisbasedon themean-fieldapproximation forelectrons 
and a variational method for phonons. In the first type. the Peierls distortion is excessively 
suppressed, and the SPState becomesmorestable than thecDw,even whenelearon-phonon 
(e-ph) coupling is very strong. Thus, 7’. of this case is enhanced, but has no isotope effect. 
In the second type, in contrast, the SP state is suppressed by the CDW when e-ph coupling is 
strong. The 7’. of this case is reduced, but shows a strongly enhanced isotope shift. In both 
cases, the SDW is always suppressed. 

1. Introduction 

Theoretical problems related to strong electron-phonon (e-ph) coupling in conductive 
crystals have been the subject of considerable interest in recent years. As is well known, 
e-ph coupling results in a phonon-mediated attraction between electrons. When this 
attraction is sufficiently strong, the Pauli paramagnetic metallic (PPM) state of electrons 
becomes unstable, and falls into the charge-density-wave (CDW) state or the supercon- 
ducting (SP) state, at low temperatures. 

In the Cowstate, frozen phononsorfrozeo local latticedistortions appear everywhere 
in the crystal; each traps two electrons together through e-ph coupling, and finally 
produces a new spatial order among them. This is one of the well known Peierls-type 
metal-insulator transitions. On the other hand, in the SP state, we have no frozen 
phonon, but moving ones that travel together with the conducting electrons, as if they 
were their ‘dresses’. This dressing effect makes electrons paired through e-ph coupling. 

These two states are always competing with each other as the ground state of a many- 
electron system coupling strongly with phonons. This competition is nothing but a 
competition between the adiabatic nature and the inverse-adiabatic nature of e-ph 
coupling [I]. In the case Of CDW, the electrons follow the frozen local lattice distortions. 

3793 0953-8984/9y143793 t 19 $04.50 @ 1992 IOP Publishing Ltd 



3794 K Nasu 

On the contrary, in the case of the SP state, the phonons or the local lattice distortions 
follow the electrons. 

Between two electrons, there is also a coulombic repulsion acting, which is always 
competing with this phonon-mediated attraction. If this repulsion is sufficiently strong, 
the PPM falls into the spin-density-wave (SDW) state. This is another metal-insulator 
transition. 

These problems related to the competition between the SP state, the CDW state and 
the SDW state have been the subject of considerable interest in recent years, and various 
theoretical studies have already been devoted to them [l,  21. However, in most of 
these studies, the phonons or the lattice vibrations are tacitly assumed to be perfectly 
harmonic, although large-amplitude vibrations induced by the strong e-ph coupling will 
inevitably involve anharmonicities. The so-called ‘harmonic approximation’, on which 
we conventionally rely, should not be overrated in the case of strong e-ph coupling, 
since it is but one possible ‘approximation’. 

For this reason, in the present paper, we will be concerned with the effects of 
anharmonicity on the aforementioned competition in the ground state. We will also be 
concerned with its effect on both the enhancement and reduction of isotope shifts of the 
superconducting transition temperature T,. 

There may be various types of anharmonicities, for example, one of the double-well 
types, which results in some specific low-energy phonon modes [3,4]. However, as is 
well known, low-energy modes often result in the CDW when they couple with electrons 
strongly, and finally spoil the spstate. For this reason, throughout this paper, we mainly 
deal with a local sextic anharmonicity. It causes the potential for the lattice motion to 
be like a strong inter-ionic repulsion, free from the occurrence of any specific low-energy 
modes. 

These problems are closely related with high-temperature superconductivity of 
transition-metal oxides [4]. There are variousexperimental fact sthatsuggest the import- 
ance ofe-ph coupling in these compounds, for example, the infrared and Raman spectra 
[S-71, the photo-induced absorption phenomena [S, 91, the tunnelling spectra [lo, 111, 
the T, degradation due to the structural changes [12-141 and so on. As for the isotopic 
shift of T, itself, it is believed to be very small [4]. However, recent experimental studies 
have clearly shown that there are new cases with enhanced isotope shifts, in addition to 
the well known cases with reduced shifts [12]. 

Keeping these problems in mind, in the following sections, we will calculate the 
phase diagram of a quasi-two-dimensional Peierls-Hubbard model with anharmonic 
phonons, together with the strong enhancement and reduction of isotope shifts. 

2. Quasi-two-dimensional anharmonic Peierls-Huhbard model 

Let us start from the following model Hamiltonian (EH)  for a system composed of 
N (Sl) quasi-two-dmensional lattice sites and N electrons, coupling strongly with 
anharmonic phonons. It is given as 
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Figure 1. Plots of o(qJ as a function of q,. The full curve denotes the harmonic case. The 
broken curve is the hard-core case, The dotted curve is the mixed case. 

Here, T(I - 1') is the transfer energy of an electron between two sites I and I' in a quasi- 
two-dimensional square lattice; aL is the creation operator of an electron at site I with 
spin U ( = (Y or /?); U is the Hubbard-type coulombic repulsive energy; i7 (= 0.5) is half 
of the average electron number; S is the coupling constant between the electron and 
phononlocalizedat sitel; Q,is thecoordinateofthisphononmode andP,isitsconjugate 
momentum; M denotes the effective mass for this mode; K (ZO) is the harmonic spring 
constant, with positive value; B (30) and C(>O) denote the constants of quartic and 
sextic anharmonicities, respectively. 

In practical calculations, we assume that the full width of the electron energy band 
is about 2 eV, and the phonon energy is about 0.08 eV. This is a standard case widely 
realized in transition-metal oxides, when the electron is coupling with the breathing 
motion of oxygen. 

We also assume that T(I - 1') between nearest-neighbour sites of the square lattice 
is T ,  while that between next-nearest-neighbour sites isO.35 T. As shown in our previous 
paper, thisset oftransferenergiesgivesanalmost circularFermisurface, and thenesting 
type instability does not occur when the e-ph coupling is weak [l]. Hence, transitions 
from a metal to insulators can occur only in the strong region of e-ph coupling, and we 
can focus our attention only on these regions. 

As for the anharmonicity, we have assumed the sextic one with no or a small negative 
quartic one, as shown in figure 1. It makes the potential for the quantum motion of the 
lattice like a strong inter-ionic repulsion. Contrary to the case of a double well, the 
harmonic spring constant K is also assumed to be positive, and hence we have no specific 
low-energy phonon mode 131. Thus, the possibility of lattice instabilities has been 
excluded in the case of weak e-ph coupling. 

Using this anharmonic model, we will also study the isotope effect on the SP state. 
For this reason, we now introduce a harmonic phonon with a spring constant (=KO) and 
a mass ( =MO), which hereafter act as a reference for various anharmonic cases. In terms 
of these KO and MO. we can also define a reference phonon energy (=fiwo), which is 
given as 

oo = (Ko/Mo)'jQ. (2.2) 
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Taking thishw, as the unit of energy, we transform all the quantities into dimensionless 
form as 

In terms of these dimensionless quantities, the new Hamiltonian h can be written as 

Here u(ql) denotes the potential for lattice motion with a local anharmonicity. Its jth 
eigenvalue (=E?) and eigenhnction (= l j ,  0) at site I are determined from the following 
equation: 

Various anharmonic vibrations will appear as a function of y ,  b and c. However, as 
mentioned before, we are interested only in a quite standard case of vibration, in the 
sense that this anharmonicity results in neither a specific low-energy mode nor a specific 
high-energy one. In order to focus our attention only on such a standard case, we use 
some selected values for y. That is, we change the value of y from 1 as c increases from 
0. so that the lowest vibrational excitation energy remains unchanged in spite of the 
anharmonicity. This condition is written as 

(2.7) 

where 

As for we take two typical cases with zero or a small negative quar anhar- 
monicity, that is, b = 0 orb = 9.17~. For these two cases, y ,  and are determined 
from equations (2.7) and (2.6) as functions of c, and are shown in figures 2 and 3, while 
examples of u(q,) for these cases are shown in figure 1. 

Let us see why these two cases are typical and important, in connection with strong 
enhancement and reduction of isotopic shifts. The Bardeen-Cooper-Schrieffer (ecs) 
theory tells us that e-ph coupling in equation (2.5) results in an inter-electron attraction 
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Figure 3. Plots of y. F , ~  (0, y. b ,  c),  eIO (0.125, y,  
b, E ) ,  ez0 (0, y. b ,  c) and r as iunnions of c, for 
b = 9.171~. 

only within a narrow energy region around the Fermi level. The energy width of this 
attractive region is nothing but 

E10 (2.9) 

Fe, = S N-'l(lllq,lOl)lZ/Eio. (2.10) 

while the strength of attraction (=Fed is given as 

I 

It hasthe transitionmatrix element l(lllq1101)12 initsnumerator. 
In terms of these zlO, l(lllqf101)12 and F a ,  we can easily understand the relation 

between isotope shifts and anharmonicities qualitatively. In the harmonic case, 
l(l1lqf1Ol)1* and decrease in entirely the same way as A increases. Hence, Fe, in 
equation (2.10) becomesindependentofA, andonly the attractive region (2.9) decreases 
according to the increase of A, as schematically shown (figure 4(a) ) .  This is the well 
known logic of why we get the normal isotope shift. 

Anharmonicities change this relation greatly. One example for the extremely anhar- 
monic case is the hard-core repulsion with an infinite barrier shown in figure 4(b). In 
this case, the vibronic wavefunctions I j ,  l )  ( j  = 0.1, . . .) are independent of A, being 
determined only by the boundary condition at the hard core, while cIO always decreases 
as A increases, and hence F,,in equation (2.10) increases as A increases, as shown in 
figure 4(b). Thus, the increase of the attraction and the decrease of the attractive region 
compete with each other, resulting in only a small or zero isotope shift. In some cases, 
it will give even negative ones. The case with b = 0 corresponds to this hard-core case, 
and the nature of u(qJ of this case is shown by the broken curve in figure 1 .  

We can also think of a mixture of a hard core and a soft one, with a step in its u(qf), 
as schematically shown in figure 4(c). In this case, the wavefunction of lowest state 10, r ) ,  



Fiprt 4. Schematic nature of 49, )  and inter-clccrron attramon: ( 0 )  hsmonic care; (b)  
hard-core case: ( c )  mixed case. The upper figures denote ~ ( 9 , )  togerher uith the vibronic 
w3~efunclions. The louct figuresdenote the inter-electron attraction as iunctionsolcncrg) 
from the Fcrm. levcl The broken lines and shaded area denote the attraction after isotopic 
substitution. 

being localized strongly within the lower well, shrinks much more rapidl) than the 
excited state 1,0 as A increases. This state 1.0 is almost independent of A ,  for the 
same reason as mentioned before. Hence, the decrease of the matrixelement I(ll.9, 00 
becomes greater than rhar of E , ~ .  Consequently, both Fe,, and the attractive region 
decrease as A increases. This situation is schematically shown in figure 4(c). Thus, the 
isotope cffect will be strongly enhanced, and this is the case corresponding to b = 9 . 1 7 ~ .  
In this case o(qJ is also shown by the doned curve in figure 1, and it has a region that 
looks like a plateau at around 9, = 1.5. 

Esacrly speaking, however, in both these two anharmonic cases, 49,) is a mon- 
otonically increasing function of 9, (#O). 

Finall), it should be nored that our \\ay of thinking in the present paper is quite 
phenomenological, in the sense that we will not be concerned with the microscopicorigin 
of the anharmonicity. From this point of view, in the next sections, we will calculate its 
effects on the metal-insulator transitions, T, and its isotope shifts in detail. 

3. Charge-density-wave state 

Using y ,  b and c, thus selected, we will calculate here the energy of the CDW state. In 
this state, as mentioned before, frozen phonons or frozen local lattice distortions appear 
everywhere in the crystal, each of which traps two electrons together, and finally 
produces a spatial order among them. Since the lattice has a quantum nature, it still 
oscillates around this distorted position. However, because of the anharmonicity, the 
width of this quantum oscillation will also be greatly changed from that of the afore- 
mentioned reference state with y = 1 and b = c = 0. 

In order to take these two effects into account, we introduce the following two 
transformations for phonons. The first is the transformation (=Mi) that generates the 
frozen distortion. It is given as 

where 6 denotes the displacement of the equilibrium position of the phonon at site I ,  
as clearly seen below: 

MF'q,Mi = 4, + ~'"z;. (3.2) 
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The second is the so-called scaling transformation ( E M $ ) ,  which changes the width 
of the quantum oscillation from that of the reference one. It is given as 

Ms = exp (;EInAl(P,q, I + 4,PI)). (3.3) 

Here A, (20) is the scaling parameter. It decreases or increases the width of oscillation 
as it becomes smaller or bigger than 1, respectively. This effect can be easily seen from 
the following results: 

M;'qlM,  = A)/2ql M;'p jM,  = AT'flPj. (3.4) 
These parameters, and AI,  are unknown at present, and should be determined 

later within a variational method. By these Mf and M,, h is transformed as 

(3.5) 

We now calculate the ground state (~lg))) of this transformed Hamiltonian 
M;'M; 'hMfM, ,  within the mean-field theory for inter-electron interactions and by a 
variational method for phonons. Since both the displacement of the equilibrium position 
and the change of oscillation width have already been taken into account, we make the 
approximation that the phonon part of lg)) is the aforementioned reference state. Then 
we can write lg)) as 

where lg)) denotes the electronic part of the ground state. At the present stage, this Ig)) 
is unknown and should be determined later self-consistently within the mean-field 
theory. Taking the average with respect to the reference state of the phonon, we can get 
a reduced Hamiltonian for the electrons alone as 

( M ; ' M ~ ' ~ M , M , )  = - E ( I -  I ' ) U & U ~ ~  + U  E (nl,  - i i ) ( r z I p  - 9 - s E z (n l , ,  - ti) 
l,I',O I 1.0 

1 b 
8 

+ 233) - - (3Af + 123AlZ + 4 2 3 )  

C + -(llA: + 90sAfZ + 60A ls '3  + 8,s3Z)) 
16 

where (. . .)is defined as 

(. . .) = n (0, I(0, 1, 0,O)l . . . IO, I(0, l , O ,  0)) 
l 

and in this calculation we have also used the relations 

(Pf) = (q3 = 112 (d) = 314 (4:) = 1118. 

(3 .7)  
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Again taking the average of this reduced Hamiltonian with respect to the electronic 
part lg)), we can formally obtain the total energy of our system as 

( ( W 1  M r l h M #  A)) ((. . .)I = (&I. . .Ig)). (3.9) 

From this result, 5 can be determined by the condition of energy minimization, i.e. 

a(( (M, 'Mr'hM,M,) ) ) /a ,  = 0 .  

and it gives the following equation for c: 
2 [((?tio)) - 4 = g [ y  - b(3h~ + 23) t k(l5A: + 20kiSZ + 4sz3)')1. 
On the other hand, the condition of energy minimization with respect to AI, 

(3.10) 
0 

a(((M;'M,'hMFM,)))/aAl = 0 

gives the following equation for AI: 

l/[(l + A)A:] = y - 36(A1 + 2~2) + &c(l lA:  + ~OAJSZ + 20szz). (3.11) 

In order to determine le)) with the CDW-type broken symmetry, we assume that the 
spatially oscillate with twice the period of the electron density [((nJo)) - 4 and 

original lattice in both directions of the crystal axes, while AJ is independent of I as 

[((nJo)) - n]+ 6nel"" ,-+Gel'".l ?,[+A w = (a, n). (3.12) 

Here, 6n and q are the amplitudes of these oscillations, and A denotes the common 
scaling parameter. The unit of length is the lattice constant. Within this approximation, 
the reduced Hamiltonian ( M ; l M ; l h M f M , )  can be replaced by a mean-field Ham- 
iltonian ( =hmW) of the CDW state as 

(M;'M;'hMfM,)+ h m w  

and hmw is given by 

hcDw = - 2 i(l- l')a&ar, - Jz etw.'nl0 + NL(Gn, A, 3 (3.13) 
f.P.0 1.0 

with 

L(6n. A, 43 = -u8nZ + 1/[4(1 + A)A] + !(y + 2$) - Qb(3A2 + l%Q* + 4s2Q4) 
+ fsc(llA3 + 90AZ$ + 60h*Q4 + SS3g6). 

HereJin the secondtermdenotes theenergygapdue to the CDW-type brokensymmetry, 
and is given as 

(3.14) J = (sQ - U&). 
Using the following Fourier components of al, and t(r) with a wavevector k,  

ah, N-112 e-lk,! ai,, e(k)  = e'"''t(O (3.15) 
I I 
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we can rewrite hcDw in a 2 X 2 matrix form as 

Here, HZ of Z means that the summation over k should be taken within a half of the first 
Brillouin zone. 

This 2 x 2 matrix can be diagonalized by the following unitary transformation: 

e'(k) E [e(k) * e(k + w)] /2 

and we get new Fermion operator Zki,,(i = 1,2) with energy Ei(k)  defined as 
E#) = -e+@)  + (-1);E(k) i =  1,2. (3.18) 

We can easily infer that the energy levels with i = 1 are below the energy gap, while 
those with i = 2 are above it. From these results, we can get the total energy as 

HZ 

((hmw)) = E E Ei(k)n(Ei(k) - P )  + W G ~ ,  a, 3. (3.19) 

Here, n(E)  is the occupation number of the electron, and p denotes the chemical 
potential of this system; n(E) is given as 

k . 0  i = 1 , 2  

n(E) = (eeE + I)-* 6 hwo/k,T,,, 

and Tremp denotes temperature. 

condition we get the following self-consistency equation for an: 
The amplitude 6n should be determined so as to satisfy equation (3.12). From this 

(3.20) 

Solving this equation together brith equations (3.10), (3.11) and (3.12), we can finally 
determine the total energy, an, qandd,  self-consistently. 

4. Metallic state and spin-density-wave state 

Let us now proceed to the PPM state. In contrast to the CDW, we have no frozen lattice 
distortion in this state, but have moving lattice distortions that travel from site to site 
together with the electronsas their'dresses'. Inordertodescribe thiseffect, weintroduce 
the following transformation M,,, that generates this moving distortion: 

M ,  = exp ( - i s l / z q  Z, (al, - ii)pl). (4.1) 
1.U 
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Here q is a variational parameter that denotes the thickness of the distortion cloud or 
the phonon cloud around an electron. By this M,, q, is transformed as 

M;lq ,M,  = q, + sl'2q 2 (nlo - r i )  
0 

and the second term denotes the displacement of the equilibrium position. In contrast 
to equation (3.2), this displacement appears or disappears according to the presence or 
absence of electrons at site 1, because it is proportional to the electron number operator 
(n,,, - IT). This M ,  also transforms the bare electron operator a& into a localized polaron 
one with a phonon cloud around itself as 

M ; l a & ~ ,  = a& exp(-is1/2qpf). (4.2) 
This distortion cloud not only moves from site to site, but also oscillates quantum- 

mechanically within each site. Similar to the case of CDW, the width of this oscillation 
w i U  be changed from that of the reference state, because of an interplay between the 
anharmonicity and the e-ph coupling. In order to take these two effects of phonons into 
account, we transform h as 

- x hf'2q,(n, - E) - sq (n,d - E)(n,< - E) 
1. a 1.0.0' 

Here, the first term denotes the transfer of a polaron with a phonon cloud around itself. 
The third term denotes the coupling between the polaron and the new phonon, whose 
equilibrium position has already been displaced by M,. The fourth term denotes the 
inter-polaron attraction, which also includes the energy lowering due'to the self-inter- 
action of an electron, coming from the e-ph coupling. 

Within the same approximation for the ground state Ig)) as described by equation 
( 3 4 ,  we get a reduced Hamiltonian only for the polarons in the PPM state as 

{M;'M,lhM,M,) = - 2 l ( l - l ' )Q&Q(* ,  eXp[-%Sq 2 ( 1 - 1  1 + A - l  )] 
I,l',C 

+ 
- kq(45A: + 30dlsq2 + 4s2q4)]}(nIe - $(nIs - r?) 

{U - sq[2 - yq + b(3qhr + sq3) 
1 

+ 3 0 s 2 q 4 ) ] ) / 4  - sqN(2 - qy + bsq3 - cs2q5)/4 (4.4) 
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and in this calculation, we have used the following equality: 
zi 

(E (n,, - "3) = 2(nl, - @(n,@ - E )  + 1/2 i = 1,2, .  . . . (4.5) 
0 

The first term of equation (4.4) denotes the effective transfer of a polaron, with the 
reduction factor exp(. . .) coming from the overlap integral between the two phonon 
clouds at sites I and l'. The second term denotes the interactions between two polarons 
with opposite spins to each other. The fourth and the third terms denote the energy 
lowering due to the aforementioned self-interaction, the interplay between the anhar- 
monicity and the e-ph coupling, and the quantum oscillation energies of phonons. 

Since we are going to calculate the total energy of the PPM state within the mean-field 
theory, we approximate the scaling parameter and the average electron density as 

d ,+d  I((nl0)) - El + 0. 
Thus, we can formally describe the total energy of the PPM state in the following form: 

where p denotes the chemical potential of the non-interacting electron system. 

minimization, 
The thickness of the phonon cloud q can be determined by the condition of energy 

a(((M;'M,lhM,M,)))/aq = 0 
and we get the equation for q as 

3c 
4 

y - b(3d + Bq2) + -(SI2 t 20hsq2 + 4s2q4) 

4 -1 
+ -exp ( - $) N-'e (k )n( -e (k )  - p ) ]  

d k 

The condition of energy minimization with respect to d ,  

a(((M;lM;'hM,M,)))/aA = 0 

gives the equation for A as 

Y c d 4  t ( Y c s q 2  - 3b)d' + (Ypcs2q4 + y - 3bsq2)A2 

(4.7) 

From these equations, we can finally determine the total energy, q and A 
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Figure 6. Plots of A ,  9, .i and 6n as functions of s/I.  
foru = 0, I = 3.125. 

Let us now proceed to the SDW state. In the case of SDW, the calculation is almost the 
same as the previous two cases, except that the phases of the electron densityoscillations 
are opposite between the spin-up electrons and the spin-down ones, and also the frozen 
distortionis absent, as 

[ ( (n tm))  - q-+ 6n e""" [ ( (n lS) )  - iil -P - Sn e'"" ii;= 0. (4.9) 

It will not be necessary for us to repeat them again in detail. 

5. Phase diagram and anharmonicity 

From the results obtained in previous sections, we can complete the phase diagram of 
oursystematabsolutezerotemperature. Asoneofitstypicalresults,wefixtatf =3.125 
so as to make the full electron bandwidth 2 eV, and describe the phase diagram in a two- 
dimensional space spanned by u/t and s / t ,  as shown in figure 5. Since the Fermi surface 
of a non-interacting electron is a circle with no nesting, we have the PPM state in the 
region of small U and s, while the SDW appears in the large U region, and the CDW appears 
in the large s region. 

The broken lines denote the phase boundary of the reference phonon state with A = 
0,b  = c = 0 and y = 1. When u/t = 0, the transition from the PPM to the CDW occurs at 
around s/t = 1.6, while when s/f = 0, the transition from the PPM to the SDW occurs at 
around u/t  = 2.7. 

In the case of the hard-core type anharmonicity with y = 0.733, b = 0 and c = 0.03, 
the PPM remains more stable than the CDW in much stronger regions of s/t than the 
previous harmonic case, as seen from the full lines. Even the SDW state is also seen to 
besuppressed by thisanharmonicity, since the  regionalso so expandsinto a new region 
of stronger U. This suppression of CDW relative to the PPM can be understood straight 
away from the broken curve in figure 1. A large-amplitude Peierls distortion is greatly 
suppressed, because of the non-linear increase of the potential energy u(qt). 
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Figure 6 shows the changes of A,  q, 4 and 6n as functions of s/f along the line 
u/r = 0. In the PPM region, 1 is almost the same as that of the reference state, A = 1, and 
q is also very smaU as expected from Migdal's theorem, q = 0.1. Both of them increase 
as s/t comes close to the phase boundary. As s/t exceeds 1.97, however, 6n and 
become finite, and 1 decreases down to about 0.6. This sudden decrease of A is due to 
the increase of the curvature of the potential energy surface around the new equilibrium 
position of the lattice. 

We have already shown that the PPM erodes even the SDW in the anharmonic case. 
As seen from A in the PPM region of figure 6, the width of the quantum oscillation 
increases as s/f increases. This is due to the interplay between the quantum nature of 
thephonon and the anharmonicity, and the increase of this width resultsin muchstronger 
inter-electron attraction than in the harmonic case. Hence, U of the SDW is effectively 
reduced and erosion occurs. 

Let us see the mixed case of a hard core and a soft one with y = 2.177, b = 0.642 and 
c = 0.07, shown by the dotted lines in figure 5. When U = 0, the PPM region shrinks a 
little into a region with smallerslt than the harmonic case, while in the large u/f  region 
the PPM erodes the SDW region given by the harmonic case. This shrinkage of the PPM 
can be understood straight away from the dotted curve in figure 1. Because of the 
plateau-like region of u(q,), which is below the harmonic case, a large-amplitude Peierls 
distortion can occur more easily. On the other hand, the suppression of the SDW occurs 
for the same reason as that of the hard-core case. 

6. Superconducting state 

Let usnowcalculate T,anditsisotope shift. Asmentioned before,oursystem isbasically 
in the adiabatic situation, in the sense that the total electron bandwidth is much greater 
than the phonon energyfiw,,. In such acase, becauseofMigdal's theorem, the formation 
of scs-type pairing order results in only a small energy lowering from the PPM state as 
amparedwith hwo. Consequently, even if we have taken the pairing order into account, 
the phase diagram shown in figure 5 is almost unaltered, except that a part of the PPM 
region changes to the SP region. 

For this reason, in this section, we estimate T, using the results obtained for the PPM 
state in section 4. First we transform h by M,,, given by equations (4.1) and (4.7), which, 
as mentioned before, generates the moving lattice distortion and also transforms the 
bareelectroninto the polaron. Except forunimportantconstant terms, h, is transformed 
as 

- s'fl c W(q,)(n,, - $ + h;.  
I 4  

Similartoequation (4.3), the first termis the transfer ofapolaron, and X ( p , ,  p , . )  denotes 
an operator that describes the overlap of the phonon clouds at sites [and 1'. It is given 
by 

- V p , , p O  = exp[-h'/zq(p, - P ~ ) I .  (6.2) 
The second term denotes the effective inter-polaron interaction, which includes both 
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the coulombic repulsion U and the attraction mediated by the phonon clouds. The 
operator Y(q,) denotes this phonon-mediated part and is given as 

Y(ql) 4[2 - yq + bq(6q: + sq2) - Cq(lSq: + 15q:sq2 + sZq4)] (6.3) 
where the second, third and fourth terms in the square brackets denote the increase of 
the potential energy of the lattice to create the phonon cloud around the electron. They 
contribute to reducing the attraction. The third term of equation (6.1) denotes the 
coupling between the polaron and the anharmonicity phonon, whose equilibrium posi- 
tion has already been displaced by the transformation M,. Here W(qJ is the non-linear 
operator of qr defined as 

W(ql) -q/[ l -yq+2bq(q:+sq2)-cq(3q:  + 10q:Sq2 +3sZq4)] .  (6.4) 
The fourth term h; is the Hamiltonian of the anharmonic phonons and is given as 

with 

U ’ ( q 1 )  E (6.5) 
Weshould note that this h; is almost the same as the fourth termofequation (2.5), and 
W(qJ in equation (6.4) is also not very much different from ql. since b ,  c and q are of the 
order of one-tenth. 

In the theories for the CDW, PPM and SDW states developed in previous sections, we 
have used the scaling transformation M ,  to determine the phonon. This is basically a 
harmonic approximation, although the width of the quantum oscillation is determined 
variationally, so as to take the effect of the sextic anharmonicity into account. The 
purpose of this approximation is to determine only the relative stability between the 
aforementioned three states within the framework of the mean-field theory. 

To determine isotope shifts of T, as a function of the anharmonicity, however, this 
harmonic approximation is insufficient. As explained in section 2 in detail, the isotope 
shift is very sensitive to the nature of the ground- and the excited-state wavefunctions 
of the lattice vibration. 

For this reason, in the present section, we use a more precise method. The jth 
eigenvalue (=E,! (A,  y, b, c)) of hb and its eigenfunction (-1jI (A, y ,  b,  c))’) at site I 
can be determined by the following equation: 

(p!/2(1 + A )  + u‘(q/))Ij[(A,y,b,c))’=E; (A,y,b,c)p!(A,Y,b, c))’ 

and using this eigenstate, we approximate Xand Y in equation (6.1) by their averages 
as 

- 4bq:(q? + 3$) + &$[2qf + 15sqZ(q: + sq2) ] .  

i = O ,  1.2,. . . 
(6.6) 

X - x  = Tr(e-eh6X)/Tr(e-Bhb) 

Y+ y = Tr(e-BhbY)/Tr(e-8hb). 
(6.7) 

We are now in the position to transform the electrons into the Nambu formalism as 

~ / ~ + A I I  a$+& 

and our Hamiltonian can be rewritten as a new Hamiltonian h,, except for constant 
terms 
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MZ'hM, 4 h,, 

which is given as 

h,, ho + h; + hi. 

Here, ho comes from the first term of equation (6.1) and is defined as 

ho = xe'(k)(AilAtl  -Ai2Ak2) e'(k) = - x ( e ( k ) - p )  
k 

Aki x N-112 e-ik.'Ali 
I 

and hi denotes the interactions 

hi E (SY - U )  (AnfA,, - $(ALAE - E) - s1I2 "(41) (AiAn - AGA,). 
I I 
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(6.8) 

(6.9) 

(6.10) 
Using this h,, we now calculate the one-particle Green function %(z - z'). It has 

two time variables z and z', and has a 2N X 2Nmatrix form in the Hilbert space spanned 
bytheWannierfunctionsoftheelectron(-Ili),(i = 1,2),withup(i= l)anddown(i = 
2) spins at each site I. Its element can be defined as 

(kil%(t - z')lk'i') = - Tr{e-Bh.~T+[AXI(5)A~r'(z')]}/Tr(e-ehs) 

Iki) = ~ - 1 1 ~  etk.lIIt3 
I 

where T+ is the time ordering operator, and the time evolution of an operator 0 is given 
as 

o(z) = e%Oe-%.. 

Since we are mainly interested in the isotope shift of T, due to the anharmonicity, 
we hereafter restrict ourselves to the small U region. In the large U region, as shown by 
Morel etnl, the isotope shift is somewhat reduced by U even in the harmonic case [15]. 
According to the conventional BCS theory, we expand the Green function with respect 
to h, as 

(kil%(t - z') lk'i') = (ki(%o(t - z')lk'i') 

+ "/edsl(ki(%o(s - zl)~Ii)(Ii '~%o(zl  - z')lk'i') 

x [ - (sy - u)(l - S,,.)(lil%( -0)lIi')l 

I o  

(6.11) 
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wherein the time evolution of an operator 0 is now given as 
qz) = e r ( h ~ + h ; ) o e - r < h + h a  

and go(r - 5 ' )  denotes the Green function given only by ho, while D(z - z') is the 
Green function of the anharmonic phonon, 

(6.12) 

Since the region of temperature relevant to T, is small, k,T, -=z hwo, we can simplify this 
Green function within the lowest two vibronic states as 

D(r2 - zl) = Tr{eeeh6T+[W(q,(rz))W(4~(tl))]}/Tr(e-Lb). 

D ( Z ,  - z l )+  2 i v - ' ~ ( l ~ ~ w ( q r ) ~ o ~ ~ ~ ~  e ~ ~ + ~ - ~ ~ ~  (6.13) 

E;0 = E ;  - Eh.  (6.14) 

I 

In the above expansion for %(z - z'), we have taken into account only the off-diagonal 
part of the interaction and the diagonal part is neglected, since the polaron effect has 
already been included in ha As for higher-order terms not written explicitly in equation 
(6.11), we take only the diagrams that are reducible into these lowest two terms. 

Taking the Fourier component of equation (6.11) with frequency w,, 

0, = n(2m + i ) / e  m = 0, 2 1 ,  k2 , .  . . (6.15) 

we can get the Green function (=%(io,)) based on the BCS-type mean-field theory 
instead of the exact one. It is given as 

(6.16) %(iw,) = [iwm - Ro -~%(iwm)J-l 

where Ro is the one-electron version of ho 

tio E e'(k)[lkl)(kll- lk2)(~11 (6.17) 
k 

and %(io,) denotes the off-diagonal self-energy, coming from hi, and is defined as 

%(iwm) = {lS)(l - &,)[F$(iw,) + F~s(iwm)](li'l}. (6.18) 
[ .  .I ,'.E 

F$ comes from the second term of equation (6.11) and is given as 

F$(iw,) 3 - (sy - u)B-'N'l 2 e+'",,O(lil%(iw,.)Ili') 

while FZ, comes from the third term of equation (6.11), and is given as 

(6.19) 
I." 

F$(iw,) E - s8-' A'-' 2 D(ivm-m.)(lil%(iom.)l~j'). (6.20) 

Here, D(iv,) is the Fourier component of D(z)  given by equation (6.13), and becomes 

I.,' 

In order to perform the summation over m in equations (6.19) and (6.20), we define 
the imaginary part of the off-diagonal element as 
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piii.(E) = -IC* Im[(fi(%?(E + ie)(L')] (6.21) 

and in terms of it, we can formally rewrite %(iw,) as 

(6.22) 

We substitute this new form into equations (6.19) and (6.20), and get 

F$ = - (SY - U) dE' p,,(E')n(E') (6.23) 

@ ( E +  ia) = - s ~ . - ' f ( 1 1 ( ~ ( q , ) ( 0 0 ' ( ~  

I 
I 

which are essentially the same as the Eliashberg equation for the system with an anhar- 
monic phonon. In practical calculations we use the following form for the off-diagonal 
part: 

(6.25) 

Using this theoretical framework, let us now discuss the essential nature of T, of this 
system and its isotope shift. As one of the typical cases for isotopic substitution, we now 
setA atA = 0.125, whichcorrespondstothecaseof I6O+ **Osubstitutionin transition- 
metal oxides. In this case, ~~~(0 .125,  y. b, c) decreases by about 6% from ~'"(0, y,  6, c) 
as seen from figures 2 and 3. The relative change ( = r )  of FeH in equation (2.10) due to 
this substitution is given as 

and this r is also shown in figures 2 and 3 as a function of c. 
In the hard-core type anharmonic case, we can see from figure 2 that r increases 

from 1 as c increases. Although this increase of r is small, it is enough to cancel the 
aforementioned decrease of since the change of r is enhanced by s as seen from 
equation (2.10). 

Keeping this qualitative nature of the isotope shift in mind, we have solved the 
aforementioned equations for T, in detail within the BCS theory. Since T, takes its 
maximum value at the phase boundary, only these boundary regions for given anhar- 
monicities are shown in figure 7. 

We can see from case (b) of figure 7 that the isotope shift disappears when b = 0 and 
c = 0.03. We can also see that the maximum value of T, itself increases as c increases 
from the harmonic case, because the boundary between the PPM and the CDW also shifts 
to the stronger region of s. As mentioned at the beginning, t and hwo are fixed at f = 
3.125 and hwo = 0.08 eV. In this case, T, amounts to about 50 - 100 K. 

When this hard-core type anharmonicity becomes stronger, the maximum value of 
T, increases further, and we get a negative isotope shift as shown in case (d) in figure 7. 
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On the other hand, in the case of mixed type anharmonicity, we can see from figure 
3 that r decreases from 1 as c increases. Thus, we get a strongly enhanced isotope shift. 
When b = 0.642 and c = 0.07, the relative shift of T, becomes twice as big as that of the 
harmonic case, as shown in case (c) of figure 7. As for the value of T, itself, its maximum 
decreases from that of the harmonic case because the SP state is suppressed by the CDW, 
as mentioned in section 5. 

7. Conclusion and discussion 

Thus, we have been concerned with the anharmonic Peierls-Hubbard model, and 
calculated the phase diagram, metal-insulator transitions, T, and its isotope shifts. In 
the case of the hard-core type anharmonicity, the metal-insulator transition is greatly 
suppressed, and the system remains metallic even when the e-ph coupling is very strong. 
This metallic state falls into the SP state at high enough T, of about 50 - 100 K, with no 
isotope effect. In the case of the mixed type anharmonicity between the hard core and 
the soft one. on the other hand, T, is suppressed by the occurrence of the CDW, and its 
relative isotope shift becomes about twice as great as that of the harmonic case. In both 
these two anharmonic cases, the transition from the metallic state to the SDW state is 
always suppressed. 

From these results, we can conclude that there are various types of isotope shifts, 
enhanced ones, very small ones and even negative ones. We can also conclude that the 
height of Tc, its isotope shift and the instabilitiesof the SP state itself are all closely related 
with each other through the anharmonicity. Hence, none of them can be considered 
separately. 

How toobserve thislocal anharmonicityhasbeenconsideredindetailinourprevious 
paper [16]. Problems related to the microscopic origin of the anharmonicity are our 
theme of future studies. 

The metal-insulator transitions shown in figure 5 are only due to the competition 
between T ,  S,  U and the anharmonicity, under the condition that the total number of 
electrons does not change and always keeps the half-filled case. In connection with Cu- 
0 type compounds, however, it is already well known that the transition from an 
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insulator to a metal occurs only by doping, that is, only by decreasing the total number 
of electrons. Our studies for this doping effect are postponed to the future. 
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